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ABSTRACT
This paper describes the use of the Absolute Nodal Coordinate
Formulation (ANCF) in modeling large-size wind turbine blades.
An efficient procedure is developed for mapping NACA airfoil
wind-turbine blades into ANCF thin plate models. The proce-
dure concerns the wind turbine blade with non-uniform, twisted
nature. As a result, the slope discontinuity problem arises and
presents numerical errors in the dynamic simulation. This in-
vestigation illustrates a method for modeling slope discontinuity
resulting from the variations of the cross sectional layouts across
the blade. A method is developed and applied for the gradient-
deficient thin plate element in order to account for structural dis-
continuity. The numerical results show a numerical convergence
and satisfy the principle of work and energy in dynamics. The
simulation results are compared with those obtained using AN-
SYS code with a good agreement.

NOMENCLATURE
a Length of plate in initial configuration(m)
α Taper angle of WTB (rad)
b Width of plate in initial configuration(m)
B1 Connectivity matrix
B2 Boundary condition matrix
c Chord length (parametric)
e Vector of absolute nodal coordinates
h Maximum thickness of airfoil (parametric)

∗On leave, Benha Institute of Technology, Benha University, Benha, Egypt.

η Parametric position along y−axis
I Identity matrix
Ls Span length of wind turbine blade(m)
m Maximum camber (parametric)
p Maximum camber location (parametric)
p Vector of unconstrained nodal coordinates
r Position vector in the global coordinate system
rx Longitudinal gradient vector
ry Transverse gradient vector
S Shape function matrix
t Thickness of plate element(m)
u Local position vector
x Vector of local coordinates (x,y,z)
X Vector of global coordinates (X ,Y,Z)
ξ Parametric position along x−axis
zc Camber line position coordinates z−axis (parametric)
zth Thickness distribution of the NACA airfoil (parametric)

Keywords: ANCF, WTB, Plate element, Slope discontinuity.

INTRODUCTION
In recent years the aerodynamic performance of wind tur-

bine blades has been improved considerably. The energy cap-
ture increases with the square of the length of the blades [1].
However, the weight of the blade increases with the cube of the
length of the blade [1]. To counteract the weight increase the
development of blades goes towards long and relatively flexi-
ble structures.The most important aeroelastic components of a
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FIGURE 1. REAL PICTURE OF LARGE SIZE WIND TURBINE
BLADE

wind turbine are the blades. The purpose of the blades is to ex-
tract aerodynamic forces from the passing airflow, therefore they
are highly affected by aerodynamic forces. Furthermore the de-
velopment of larger wind turbines has resulted in long slender
blades with high flexibility. The modeling problem increases as
the rotor blade diameter increases, for instance, a wind turbine,
at Risoe National Laboratory, Denmark [2] has a tower height of
(120m), rotor diameter of (110m), see Fig.1. A good literature
of wind turbine modeling methods may be found in [3, 4].

The recently developed ANCF has been used in the analysis
of large deformation of flexible multibody systems include belt
drives [5–7], rotor blade [8], piezo-electric laminated plates [9],
flexible manipulators [10], and cable applications [11]. The im-
portant advantage of using this formulation in multibody com-
puter simulations is the obtained constant mass matrix, which
can be obtained fully nonlinear dynamic problems. Therefore,
this non-linear finite element formulation can be implemented
using non-incremental solution procedures in a general frame-
work of multibody computer algorithms. The elastic forces,
in contrast, are calculated using a general continuum mechan-
ics approach that allows for describing the cross-section defor-
mation modes as well as the deformation modes that appear in
the existing beam theories. Recent advances in ANCF, involv-
ing the method of calculating the strain energy [12], illuminat-
ing high frequency modes [13, 14], development of stiff integra-
tors [15, 16] help in reducing the calculation time and enhance
the sensitivity of the system equations. Also the formulation of
3D joint constraints is well established and verified [17], which
enable to construct the model of complete wind turbine blades
and structure. Further advances in the ANCF are carried out
including the modeling of internal damping [18] and nonlinear
viscoelasticity [19].

The desirable features of the ANCF mentioned above remain

in effect even in the case of flexible bodies with slope discontinu-
ities [20]. As demonstrated in the literature [20], fully parameter-
ized ANCF elements, which have a complete set of gradient vec-
tors (beam and thick plate), can be used to model slope disconti-
nuities in a straight forward manner. In the case of gradient de-
ficient elements, which employ a reduced set of parameters (thin
beam, thin plate), do not have a complete set of gradient vectors.
The difficulties associated using these gradient deficient ANCF
finite elements in modeling slope discontinuities have been dis-
cussed for thin beams in [21,22] and for certain kind of rotations
in [23, 24]. General methods for modeling slope discontinuities
of gradient deficient elements are discussed in [25].

In this paper, an ANCF model of large-size wind turbine
blade is developed using thin plate elements. The use of the thin
plate element is more efficient in that application because of the
relative scale between the thickness and length and width. A
procedure of constructing the ANCF model of NACA airfoils of
wind turbine blades is established. Because of the variations of
the cross sectional layouts across the blade, structural disconti-
nuities are found between the upper and lower surfaces and be-
tween the blade body and root-blade section. The paper suggest
a method of modeling the slope discontinuities of the finite ele-
ment model of the wind turbine blade. Numerical examples are
carried out with good agreement with ANSYS code results.

ABSOLUTE NODAL COORDINATE FORMULATION
In the absolute nodal coordinate formulation, the nodal co-

ordinates of the elements are defined in a fixed inertial coordinate
system, this fixed inertial coordinate system should be mentioned
here as the Structure Coordinate System SCS:(XY Z) . The nodal
coordinates of an element j are consisting of the global displace-
ments and slopes of each node. For a 4-noded plate element, el-
ement j, on body i, as shown in Fig.2, the nodal coordinates of
node k, k = (1,2,3,4) can be written as:

ei jk =
[
ri jkT ∂ri jk

∂xi j

T
∂ri jk

∂yi j

T
∂ri jk

∂ zi j

T ]T
(1)

where ri jk defines the global position of node k and the three vec-
tors ∂ri jk/∂xi j, ∂ri jk/∂yi j, and ∂ri jk/∂ zi j, define the position
vector gradients at node k with respect to the element coordinate
system ECS:

(
xi j,yi j,zi j

)
. As a consequence, such a representa-

tion guarantees inter-element continuity of global displacement
gradients at these points. The nodal coordinates of one element
can then be given by the vector ei j =

[
ei j1T ei j2T ei j3T ei j4T

]T . In
the ANCF, the global position of an arbitrary point on the body
i, element j, is defined as:
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ri j = Si j (ui j)ei j (2)

where Si j is the element shape function matrix [26], ui j =[
xi j yi j zi j]T is the local position of the point, xi j,yi j and zi j are

the local coordinates of the element defined in the ECS. By defin-
ing pi as the unconstrained vector of nodal coordinates over the
flexible body i, with the dimension of DOFs× 1, where DOFs
are the total number of degrees of freedom. Thus, Eqn.(2) can be
rewritten as:

ri j = Si jei j = Si jBi j
1 Bi

2pi (3)

where Bi j
1 is the connectivity matrix and Bi

2 is boundary condi-
tions linear-transformation matrix.

Slope Discontinuity
Assuming that the element has an arbitrary initial orienta-

tion, see Fig.3, ri j can be defined using the ECS as follows:

ri j = Ri j +Ai jui j (4)

where Ri j is the global position vector of the origin of the el-
ement coordinate system, and Ai j is the transformation matrix
that defines the orientation of the ECS with respect to the SCS.
Therefore the position vector gradients with respect to the ECS
in the initial configuration can be obtained as:

∂ri j

∂ui j = Ai j (5)

To maintain the desirable features of the ANCF that include a
constant mass matrix and zero Coriolis and centrifugal forces; it
is provided that all the element transformation matrices that de-
fines the orientation of the ECS with respect to SCS are the same.
That is if two elements have initially different orientations; the
continuity of the position vector gradients can not be maintained,
consequently, this leads to a nonlinear mass matrix for the flex-
ible body. In order to model slope discontinuities in such away
to lead to constant mass matrix for the element that undergoes
finite rotation and large deformation, an intermediate coordinate
system is introduced [20], in which a body-parameterization is
used instead of the element parameterization. This intermedi-

FIGURE 2. UN-DEFORMED CONFIGURATION OF PLATE ELE-
MENT

FIGURE 3. STRUCTURE (SCS), BODY (BCS) AND ELEMENT (ECS)
COORDINATE SYSTEMS OF CONTINUOUS STRUCTURE

FIGURE 4. STRUCTURE (SCS), BODY (BCS) AND ELEMENT (ECS)
COORDINATE SYSTEMS OF DISCONTINUOUS STRUCTURE

ate coordinate system is mentioned in this investigation by the
body coordinate system BCS. If the axes of the BCS is selected
to be initially parallel to the axes of the SCS, as shown in Fig.3,
Eqn.(4) should take the form of:

ri j = Ri +Xi (6)
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where Ri is the global position vector of the origin of the body
coordinate system, and Xi =

[
X i Y i Zi] are the body parameter-

ization. Therefore, the position vector gradients for all the ele-
ments over the body i,can be obtained as:

∂ri j

∂Xi = I (7)

where I is a 3× 3 identity matrix. This means that, using the
BCS, all the position vector gradients of all elements are the
same and consequently a standard ANCF assembly can be es-
tablished. The gradients transformation between the BCS and
the ECS can be written as [25]:

[
ri j

xi j ri j
yi j ri j

zi j

]
=
[
ri j

X i ri j
Y i ri j

Zi

]
∂X i

∂xi j
∂Y i

∂xi j
∂Zi

∂xi j
∂X i

∂yi j
∂Y i

∂yi j
∂Zi

∂yi j

∂X i

∂ zi j
∂Y i

∂ zi j
∂Zi

∂ zi j

 (8)

Simply, Eqn.(8) can be rewritten as: ri j
xi j = Ji jT

0 ri j
Xi , where J0

is the orthogonal transformation matrix that describe the initial
orientation of the ECS with respect to BCS and can be written in
the form of:

J j
0 =

J j
0(1,1) J j

0(1,2) J j
0(1,3)

J j
0(2,1) J j

0(2,2) J j
0(2,3)

J j
0(3,1) J j

0(3,2) J j
0(3,3)

 (9)

Thus, the element coordinate transformation of the nodal point k
can be carried out using the following equations:


ri jk

ri jk
xi j

ri jk
yi j

ri jk
zi j

 =


I 0 0 0
0 Ji jk

0(1,1)I Ji jk
0(2,1)I Ji jk

0(3,1)I
0 Ji jk

0(1,2)I Ji jk
0(2,2)I Ji jk

0(3,2)I
0 Ji jk

0(1,3)I Ji jk
0(2,3)I Ji jk

0(3,3)I




ri jk

ri jk
X

ri jk
Y

ri jk
Z

 (10)

ei jk = Ti jkPi jk (11)

where Pi jk =
[
ri jk ri jkT

X ri jkT
Y ri jkT

Z

]T
, thus, Eqn.(3) can be mod-

ified into:

ri j = Si jTi jBi j
1 Bi

2Pi (12)

This allows maintaining the ANCF desirable features that in-
clude a constant mass matrix and zero Coriolis and centrifugal
forces in the equations of motion of structures that experience
arbitrary large displacements.

Gradient Deficient Elements
In the case of slope discontinuity of gradient deficient ANCF

finite elements as the case of thin plates, Eqn.(10) reduces to:

ri jk

ri jk
xi j

ri jk
yi j

=

I 0 0 0
0 Ji jk

0(1,1)I Ji jk
0(2,1)I Ji jk

0(3,1)I
0 Ji jk

0(1,2)I Ji jk
0(2,2)I Ji jk

0(3,2)I




ri jk

ri jk
X

ri jk
Y

ri jk
Z

 (13)

One can always define at the element interface three independent
structure coordinate lines that lie on the structure surface [25]. In
this investigation, thin plate elements are used to model the large
size wind turbine blades, see Fig.4. The use of thin plate element
in modeling the wind turbine plate is obvious because of the large
relative size between the plate thickness and the plate length and
width. Structural discontinuity in this case is apparent along the
blade length and therefore, Eqn.(13) should be used properly.
It is important, however, to point out that, fully parameterized
elements with efficient elastic force formulations can always be
used if necessary instead of gradient deficient elements.

AIRFOIL SHAPE PARAMETERS
Wind turbines on the propeller blades possess various blade

profiles such as NACA, LS and LM profiles standards [27].
In horizontal axis wind turbines NACA profiles standards of
National Advisory Committee for Aeronautics is applied [28].
The shape of the airfoil can be chosen in the famous NACA 4
digits library [28]. This simple library is interesting because the
shape is expressed analytically as a function of three parameters,
which control the maximum camber, maximum camber location,
and maximum thickness of the airfoil, see Fig.5.
The camber line can be expressed in the xz plane, as:

zc

c
=

m
p2

(
2pξ −ξ

2
)
, · · ·ξ ≤ p (14)

=
m

(1− p)2

(
1−2 p+2pξ −ξ

2
)
,ξ ≥ p (15)
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FIGURE 5. AIRFOIL SHAPE PARAMETERS

In these expressions, c is the airfoil chord length, m is the maxi-
mum camber, p is the maximum camber location, and ξ = (x/c)
is the parametric position. The thickness distribution for the
NACA 4-digits sections is given by:

zth = 5ch(0.2969ξ
1/2−0.1260ξ −0.3516ξ

2 (16)

+0.2843ξ
3−0.1015ξ

4)

where h is the maximum thickness expressed as a fraction of the
chord. The wing section is obtained by combining the camber
line and the thickness distribution as described by:

xu = x− zth sinθ

zu = zc + zth cosθ

xl = x+ zth sinθ

zl = zc− zth cosθ

 (17)

Here, θ is the slope of the camber line, and can be calculated
using the following equation:

dzc

dx
=

d (zc/c)
dξ

=
2m
p2 (p−ξ ) , · · ·ξ ≤ p (18)

=
d (zc/c)

dξ
=

2m

(1− p)2 (p−ξ ) ,ξ ≥ p (19)

ANCF Model of Uniform Wind Turbine Blade
The blade profile is a hollow profile usually formed by two

structures glued together, one upper shell on the suction side, and
one lower shell on the pressure side. It is required to construct
the wind turbine blade with specific NACA code, and therefore,
the NACA profile equations should be used to estimate the nodal
position and nodal gradients. In this section, ANCF thin plate

TABLE 1. STATEMENTS OF NODAL COORDINATES OF THE
UPPER SURFACE

k x rk rk
x rk

y

1 0.1c
[

xu 0 zu

]T [
dxu
dx 0 dzu

dx

]T [
0 1 0

]T

2 p
[

xu 0 zu

]T [
dxu
dx 0 dzu

dx

]T [
0 1 0

]T

3 p
[

xu Ls zu

]T [
dxu
dx 0 dzu

dx

]T [
0 1 0

]T

4 0.1c
[

xu Ls zu

]T [
dxu
dx 0 dzu

dx

]T [
0 1 0

]T

5 c
[

xu 0 zu

]T [
dxu
dx 0 dzu

dx

]T [
0 1 0

]T

6 c
[

xu Ls zu

]T [
dxu
dx 0 dzu

dx

]T [
0 1 0

]T

13 0
[

xu 0 zu

]T [
0 0 1

]T [
0 1 0

]T

14 0
[

xu Ls zu

]T [
0 0 1

]T [
0 1 0

]T

TABLE 2. STATEMENTS OF NODAL COORDINATES OF THE
LOWER SURFACE

k x rk rk
x rk

y

7 0.055c
[

xl 0 zl

]T [
dxl
dx 0 dzl

dx

]T [
0 1 0

]T

8 p
[

xl 0 zl

]T [
dxl
dx 0 dzl

dx

]T [
0 1 0

]T

9 p
[

xl Ls zl

]T [
dxl
dx 0 dzl

dx

]T [
0 1 0

]T

10 0.055c
[

xl Ls zl

]T [
dxl
dx 0 dzl

dx

]T [
0 1 0

]T

11 c
[

xl 0 zl

]T [
dxl
dx 0 dzl

dx

]T [
0 1 0

]T

12 c
[

xl Ls zl

]T [
dxl
dx 0 dzl

dx

]T [
0 1 0

]T

15 0
[

xl 0 zl

]T [
0 0 −1

]T [
0 1 0

]T

16 0
[

xl Ls zl

]T [
0 0 −1

]T [
0 1 0

]T

element should be used to construct the wind turbine blade. It is
found that six elements can be used to construct the blade model
in such away to coincide with the NACA code. The NACA thick-
ness distribution, Eqn.(17) should be used to estimate the nodal
position and gradients along the chord length. Three plate el-
ements are used for the upper surface and three others for the
lower side of the wind turbine blade. The construction procedure
is tabulated in Tab.(1) and Tab.(2). The tables show the state-
ments of the nodal coordinates,i.e., nodal position and gradients
of the upper and lower surfaces respectively. Figure (6) shows
the nodes and the corresponding gradients of each node, as de-
scribed in Tab.(1,2).
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FIGURE 6. NODAL POSITIONS AND GRADIENTS

It is clear that, structural discontinuity appears at the inter-
face sections. Points number (13,14) on the upper surface and
points (15,16) on the lower surface at the leading edge of the
blade have different gradients in the x−axis. Also, points num-
ber (5,6) on the upper surface and points (11,12) on the lower
surface at the trailing edge of the blade have different gradients
along the x−axis. While the geometric construction of the wind
turbine blade is carried out successfully, see Fig.7, the structural
discontinuity prevents the elements assembly process for correct
dynamic simulation.

FIGURE 7. DISCONTINUOUS ANCF MODEL OF WTB

ANCF Model of Non-Uniform Wind Turbine Blade
It is important that the blade sections near the hub are able

to resist forces and stresses from the rest of the blade. Therefore,
the blade profile near the root is both thick and wide. Further,
along the blade, the blade profile becomes thinner so as to ob-

tain acceptable aerodynamic properties. Therefore, the effect of
tapering the blade is obvious; it tends to decrease the stresses.
The design process of the blade constitutes a compromise be-
tween the desire for strength and the desire for good aerodynamic
properties. At the root, the blade profile is usually narrower and
tubular to fit the hub. From the geometric point of view, taper-
ing is connecting two cross sections along the span length, Ls,
within the blade surface, with an angle called the taper angle, α;
the change in the chord length, ∆c, can be obtained as:

∆c = Ls tanα ⇔c2 = c1−∆c (20)

where c is the chord length, and c1, c2 are the chord length at the
’start’ and ’tip’ cross sections respectively. In this investigation,
the lofted surface goemetry [29] is used to construct the ANCF
model of the tapered (non-uniform) blade. The lofted surface is
constructed between the ’start’ and the ’tip’ cross sections. In the
case of obtaining the global position vector for the non-uniform
wind turbine blade; the position vector r should be linearly inter-
polated between the blade starting chord and the ending chord.
This bounded curves can be denoted by r(ξ ,0) and r(ξ ,1) and
by two straight segments r(0,η) and r(1,η) connecting them.
Surface lines in η direction are therefore straight,i.e., lofted sur-
faces, whereas each line in the ξ direction is a blend of r(ξ ,0)
and r(ξ ,1) this blend constitutes the surface expression of:

r(ξ ,η) = (1−η)r(ξ ,0)+η r(ξ ,1) (21)

where η and ξ are parametric domains such that ξ ,η ∈ [0,1] and
can be estimated as ξ = x/a,η = y/b, with a, and b are the plate
element length and width respectively. It should be mentioned
here that this kind of surface is fully defined by specifying the
two boundary curves. The four corner points of the plate ele-
ments are implicit in these curves. Depending on c1 and c2, the
boundary curves can be obtained as:

r(ξ ,0) = ri = S(x,0)e · · · ,x ∈ [0,c1] (22)

where e is the nodal coordinates of the starting cross section i.
Thus, the position vector at the end cross section can be con-
cluded as:
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FIGURE 8. CONSTRUCTION OF TAPERED BLADES (START-
END SECTION)

r(ξ ,1) = r j =

 0
Ls
0

+
 c2

c1
0 0

0 1 0
0 0 c2

c1

r(ξ ,0) (23)

By substituting Eqn.(22 , 23) into Eqn.(21) gives the curves of
cross sections between ri and r j. Then, Eqn.(21) can be solved
for the nodal coordinates e of the ending cross section. i.e., the
nodal coordinates of nodes number 3,4,6,and 14, on the upper
surface and the nodal coordinates of nodes number 9,10,12, and
16 on the lower surface, see Fig.7. If the upper and lower sur-
faces should be divided into more than one element along the
span length, Eqn.(21) can be used to calculate the corresponding
nodal coordinates. The number of elements along the span length
can improve the dynamic simulation results for the design pro-
cess. Figure (8) shows a tapered wind turbine blade according to
NACA 4412 with tapering angle α = 8◦, the nodes and gradients
are illustrated to show the ruled surface between the two edges.

Similar procedure can be carried out to construct the root-
blade section with good agreement, see Fig.9. The start cross
section of the blade is used with the circular edge of the root
surface to construct the lofting surface between them.

MODELING SLOPE DISCONTINUITY
It is shown in the previous sections, that structural disconti-

nuities are found in two places of the wind turbine blade struc-
ture. The first place lies in the interface section between the up-
per and lower surfaces. These surfaces are generated directly
from the NACA code thickness distribution, Eqn.(17), this struc-
tural discontinuity can be called as chord-wise slope discontinu-
ity. The second place in the interface between the root-start sec-
tion and the start-end section of the blade, this structural discon-
tinuity can be called as span-wise slope discontinuity. A method
for modeling the slope discontinuities in the wind turbine blade

FIGURE 9. CONSTRUCTION OF TAPERED BLADES (ROOT-
BLADE SECTION)

should be described in the following subsections.

Modeling Chord-Wise Slope Discontinuity

The chord-wise slope discontinuity can be modeled with
reasonable accuracy using fillets which can be introduced sys-
tematically using initially curved elements. Regarding to Fig.7,
a fillet can be used and curved plate elements can be constructed
in the leading and trailing edges. In this investigation, a poly-
nomial is established by fitting the points between node number
(7) and node number (1) respectively. The order of polynomial
depends on the required actuary of the output profile. Using the
resulted polynomial, the nodal positions and gradients are esti-
mated at the ’start’ and ’end’ cross sections of the wind turbine
blade. By the fillet constructed on the leading edge of the blade,
a continuous structure ANCF model can be constructed. This
fillet cancel two nodes, which have the discontinuous gradients.
Similar procedure can be used in the trailing edge, and two other
nodes should be canceled. By this method, only 12 nodes and
6 plate elements can model the wind turbine blade with a good
agreement with the NACA code profile, see Fig.10.

Modeling Span-Wise Slope Discontinuity

The span-wise slope discontinuity can be modeled by using
the lofting equation for the gradients transformation as well as
the nodal position transformation. Equation (21) can be used to
get the gradients at the lofted cross section. The gradients of the
lofted surface can be obtained as:
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FIGURE 10. USING FILLETS AT THE LEADING AND TRAIL-
ING EDGES

FIGURE 11. DYNAMIC SIMULATION DUE TO GRAVITY

dr(ξ ,η)

dξ
= (1−η)

dS(ξ ,0)
dξ

e+η
dS(ξ ,1)

dξ
e (24)

dr(ξ ,η)

dη
= −r(ξ ,0)+ r(ξ ,1) (25)

By using Eqn.(24, 25), a continuous structure ANCF model can
be obtained for large-size wind turbine blades. It should be men-
tioned here that, using Eqn.(24, 25) reduce Eqn.(13) to the iden-
tity matrix, and therefore the desirable features of the ANCF can
be maintained, as described in section (2).

DYNAMIC SIMULATION
The dynamic simulation of a cantilevered wind turbine

blade is carried out using multibody system computer code,
SAMS(Systematic Analysis of Multibody Systems) [30]. The
gravity force is introduced as element/nodal forces. The ANCF

FIGURE 12. TRANSVERSE DEFLECTION OF EDGED POINTS ON
THE TIP END

FIGURE 13. ENERGY AND WORK BALANCE

of wind turbine blade is constructed using 12 thin plate ele-
ments along the blade. The wind turbine blade considered have
the following specifications: NACA Code: 4412, chord length
c1 = 3 [m], span length Ls = 40 [m], root radius of 0.5[m], taper
angle α = 5◦, plate thickness t = 6 [mm], modulus of elasticity
of 200 [MPa], poisson ration 0.33, density 7050

[
Kg/m3

]
. The

numerical integration is carried out by using the sparse HHT in-
tegrator [16], with the following parameters: relative and abso-
lute error of 1×10−6, constraint tolerance:1×10−8. Figure(11)
shows two frames of the dynamic simulation of the moving
blade. The transverse deflection of two points on the tip end
are plotted in Fig.12, the results shows a numerical convergence
in the case of use all deformation modes. It should be mentioned
here that the viscoelastic model is quite faster than the elastic
model. The energy terms are plotted in Fig.13 which shows a
good conservative property of the proposed elastic model.

In the second example, the blade is subjected to air stream
with velocity of 3[m/s]. It is shown by [31] that the aerody-
namics characteristics of NACA 4412 are as follows: mid-blade
lift coefficient is 1.35 at flow angle of 12.5◦, and drag coeffi-
cient of 0.03. Other values of the coefficients along the mid-line
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FIGURE 14. TRANSIENT RESPONSE OF AERODYNAMIC FORCES
WITH ANSYS

FIGURE 15. COMPARISON OF AERODYNAMICS RESPONSES

of the blade are obtained from Ref. [33, 34]. In order to com-
pare the ANCF results with ANSYS, advanced coupled numeri-
cal method of computational fluid dynamics (CFD) module and
computational flexible multibody dynamics (CFMBD) module
has been developed in order to investigate the aero elastic re-
sponse of this example. The meshing domains of both the blade
wall and fluid is established and the ANSYS result is shown in
Fig.14. The comparison between the transient responses of the
ANCF and ANSYS-FEM models is shown in Fig.15, the numer-
ical results are in good agreement with a noticeable errors due
to the non-conforming structure of the reference configuration of
the plate elements.

SUMMARY AND CONCLUSIONS
In this paper, an efficient procedure is developed for map-

ping NACA airfoil wind turbine blades into absolute nodal co-
ordinate formulation (ANCF) models. The procedure concerned
the wind turbine blade with the non-uniform configuration. The
structural slope discontinuity due to variations of the cross sec-
tional layouts across the blade is manipulated successfully. The
chord-wise slope discontinuity is modeled with reasonable ac-
curacy using fillets which can be introduced systematically us-
ing initially curved elements. The span-wise slope discontinuity
is modeled by using the lofting surface geometry for the gradi-
ents transformation as well as the nodal position transformation.
SAMS software package is used for dynamic simulation of the
developed blade model. The simulation results show a numerical

convergence and satisfy the principle of work and energy in dy-
namics. Since the ANCF is suited for large-deformation, large-
rotation problems, which is the case of large blades, i.e., the use
of ANCF opens opportunities to improve the design process of
such blades. This work is considered as a necessary step in the
Dynamics for Design (DFD) process concerning large-rotation,
large-deformation wind turbine blades.
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